Analytical Solution to Normal Forms of Hamiltonian Systems
نویسندگان
چکیده
منابع مشابه
Analytical Solution to Normal Forms of Hamiltonian Systems
The idea of the normalisation of the Hamiltonian system is to simplify the system by transforming Hamiltonian canonically to an easy system. It is under symplectic conditions that the Hamiltonian is preserved under a specific transformation—the so-called Lie transformation. In this review, we will show how to compute the normal form for the Hamiltonian, including computing the general function ...
متن کاملReal Hamiltonian forms of Hamiltonian systems
We introduce the notion of a real form of a Hamiltonian dynamical system in analogy with the notion of real forms for simple Lie algebras. This is done by restricting the complexified initial dynamical system to the fixed point set of a given involution. The resulting subspace is isomorphic (but not symplectomorphic) to the initial phase space. Thus to each real Hamiltonian system we are able t...
متن کاملNORMAL FORM SOLUTION OF REDUCED ORDER OSCILLATING SYSTEMS
This paper describes a preliminary investigation into the use of normal form theory for modelling large non-linear dynamical systems. Limit cycle oscillations are determined for simple two-degree-of-freedom double pendulum systems. The double pendulum system is reduced into its centre manifold before computing normal forms. Normal forms are obtained using a period averaging method which is appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computational Applications
سال: 2017
ISSN: 2297-8747
DOI: 10.3390/mca22030037